

Useful Formulae for ENGAA

Physics

Electricity

$$R_T = R_1 + R_2 + \dots + R_n$$

Effective resistance within a series circuit

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Effective resistance within a parallel circuit

$$V_{out} = \frac{R_1}{R_1 + R_2} \cdot EMF$$

where V_{out} is the PD across the resistor, R_1

$$P = IV = \frac{V^2}{R} = I^2 R$$

where P is electrical power dissipated across a component, V is the PD across it and I is the current through it

$$V = IR$$

$$0 = It$$

$$W = QV$$

$$R = \frac{\rho L}{A}$$

where ρ is resistivity, L is the length of wire and A is the cross-sectional area

Waves

$$Frequency = \frac{1}{Time\ Period}$$

$$v = f\lambda$$

$$\lambda = \frac{ax}{D}$$

 λ is the wavelength, a is the slit to slit separation, x is the fringe separation and D is the slit to screen distance

$$n \lambda = d \sin \theta$$

n is the order of the maxima, d is the slit separation, θ is the angle between the light and the horizontal

Kinematics

When acceleration is not constant:

$$a = \frac{dv}{dt}$$

$$v = \frac{ds}{dt} = \int a \, dt$$

$$s = \int v \, dt$$

For a constant acceleration use suvat equations:

$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

$$v^{-} = u^{-} + 2as$$

$$v = u + at$$

Forces and Equilibrium

 $Moment = Force \times Perpendicular Distance$

$$F \leq \mu R$$

For an object in equilibrium, where R is the normal contract force and F is friction

$$F = \mu R$$

At the point of sliding

Magnitude of Resultant Force, $F = \sqrt{x^2 + y^2}$

$$x = F\cos\theta$$

$$y = F \sin \theta$$

where x is the force in horizontal plane and y is force in vertical

$$Centripetal\ Force = \frac{mV^2}{R}$$

Newton's Laws

$$F = ma$$

where F is the resultant force acting on the body

 $Momentum = mass \times velocity$

where total momentum in system remains constant unless an external force acts

$$\Delta P = Ft$$

Change in Momentum = Area under F-t graph

$$F = \frac{dp}{dt}$$

$$Power = \frac{Energy}{Time}$$

Energy

$$KE = \frac{1}{2}mv^2$$

$$GPE = mgh$$

$$W = fd$$

where d is the distance travelled in direction of the force in m

 ME_f – ME_i = Work done by Driving Force– Work Done by Resistive Forces where ME_f is the Final mechanical energy, ME_i is the Initial mechanical energy

Mechanical Energy
$$= KE + GPE$$

$$Efficiency = \frac{useful\ output}{total\ input} \times 100\%$$

Materials

$$Density = \frac{\textit{Mass}}{\textit{Volume}}$$

$$Strain = \frac{Change\ in\ Length}{Original\ Length}$$

$$Young's\ Modulus = \frac{Stress}{Strain}$$

$$F = kx$$

$$EPE = \frac{1}{2}Fx = \frac{1}{2}kx^2$$

Area underneath a F-x graph

Radioactivity

Half-life = time taken for number of undecayed nuclei or the activity of a sample to halve

Number of half – lives occurred,
$$n = \frac{\text{time elapsed}}{\text{half - life of a sample}}$$

$$A = \left(\frac{1}{2}\right)^n \cdot A_0$$

The final activity, A, after n half-lives, of a sample with initial activity A_0

$$N = \left(\frac{1}{2}\right)^n \cdot N_0$$

Amount of undecayed nuclei left, N, after n half-lives, of a sample with initial number of undecayed nuclei N_0

Mathematics

Ratios and Proportionality

If
$$x: y = a: b$$
, then $\frac{x}{y} = \frac{a}{b}$

where a and b are numbers

$$x \propto y \Rightarrow \frac{x_1}{y_1} = \frac{x_2}{y_2} = k$$

x is directly proportional to y so their quotient is a constant ratio, k

$$x \propto \frac{1}{y} \Rightarrow x_1 y_1 = x_2 y_2 = k$$

x is inversely proportional to y so their product is a constant ratio, k

Given x = yz, for a constant $z, x \propto y$

Algebra and Functions

For a quadratic of form $ax^2 + bx + c = 0$, roots are:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Discriminant, $d = b^2 - 4ac$

d = 0 for repeated roots, d < 0 for no real roots, d > 0 for 2 distinct real roots

If
$$f(a) = 0$$
, then $(x - a)$ is a factor of the equation $f(x) = 0$

If f(a) < 0, f(b) > 0, the root is in the interval [a, b]

Sequences and Series

For Arithmetic Progressions with first term, a, and common difference, d:

$$U_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n[2a + (n-1)d]$$

For Geometric Progressions with first term, a, and common ratio, r:

$$U_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1 - r} \text{ for } -1 < r < 1$$

Binomial Expansions

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$

Geometry

Circumference of circle =
$$2\pi r$$

Area of a Circle =
$$\pi r^2$$

Volume of a circle =
$$\frac{4}{3}\pi r^3$$

Exterior Angle =
$$\frac{360}{n}$$

For a regular polygon

Coordinate Geometry

Equation of a circle:
$$(x - a)^2 + (y - b)^2 = r^2$$

For a circle with centre (a,b) and radius, r

If two lines are perpendicular, the product of their gradients = -1

Trigonometry

•	•				
Angle	0°	30°	45°	60°	90°
sinϑ	0	1	$\sqrt{2}$	$\sqrt{3}$	1
		$\overline{2}$	2	2	
cosϑ	1	$\sqrt{3}$	$\frac{\sqrt{2}}{}$	$\frac{1}{2}$	0
		2	2	2	
tanϑ	0	$\sqrt{3}$	1	$\sqrt{3}$	undefined
		3			

From degrees to radians: multiply by π and divide by 180 From radians to degrees: divide by π and multiply by 180

For θ in radians;

Length of Arc =
$$r\theta$$

Area of a sector
$$=\frac{1}{2}r^2 \theta$$

For a triangle with angles A,B and C in radians or degrees and sides a, b, c;

Area of a Triangle
$$=\frac{1}{2}absinC$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Trigonometric Identities;

$$sin^2\theta + cos^2\theta = 1$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

Exponentials and Logarithms

$$\log a + \log b = \log ab$$

$$loga - logb = log\frac{a}{b}$$

$$loga^b = bloga$$

Calculus

Increasing function: f'(x) > 0

Decreasing function: f'(x) < 0

Stationary Point: f'(x) = 0

Maximum point: f''(x) < 0

Minimum point: f''(x) > 0